10(x^2-1)=1+10(x-1)

Simple and best practice solution for 10(x^2-1)=1+10(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(x^2-1)=1+10(x-1) equation:



10(x^2-1)=1+10(x-1)
We move all terms to the left:
10(x^2-1)-(1+10(x-1))=0
We multiply parentheses
10x^2-(1+10(x-1))-10=0
We calculate terms in parentheses: -(1+10(x-1)), so:
1+10(x-1)
determiningTheFunctionDomain 10(x-1)+1
We multiply parentheses
10x-10+1
We add all the numbers together, and all the variables
10x-9
Back to the equation:
-(10x-9)
We get rid of parentheses
10x^2-10x+9-10=0
We add all the numbers together, and all the variables
10x^2-10x-1=0
a = 10; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·10·(-1)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{35}}{2*10}=\frac{10-2\sqrt{35}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{35}}{2*10}=\frac{10+2\sqrt{35}}{20} $

See similar equations:

| 3x-9+2x=360 | | 0=-5a-8a | | -12=-7v+4(v-6) | | 1/4y+6=1/5y | | x+3/2=1.96 | | m+3m-4+3m-4=76 | | 4x+4+6x-14+2x+7=360 | | Y/2=y/3+6 | | x-15/7=-1.96 | | 5-4+7x+1=9x+0 | | 8x+7=-9x-112 | | 3w-18=18 | | 2x^2+3.5x-5=0 | | 5=p/3-2 | | 3b(5b+6)+6b(8-3b)=0 | | 3b(5b+6)+6b(8-3b)=63b | | -4=4(m-77) | | (x+20)-6=30 | | 2x+8=5- | | 24=10+7s | | 4+2(5x-8)=10x+4 | | 9x+6+(-3x)+8+(-10)=4x+5 | | p=4(1) | | 0w+19+3w=6(9+w)−14 | | 29(2y+7)=42 | | -4x+6=-2x-6 | | 5x+7=4x+31 | | 5-5x=-(2x+7) | | w+5.46=7.32 | | 4x=19=59 | | -2x-1=-6x-33 | | 19=f/3+16 |

Equations solver categories